B-Tree

CS 251 - Data Structures
and Algorithms

| Note:
Slides complement the
discussion in class

O

@) O

Table of Contents

Enforcing balance

Bayer, R., & McCreight, E. M. (1972).
Organization and Maintenance of
Large Ordered Indexes. Acta
Informatica, 1(3), 173—189.

https://link.springer.com/article/10.1007/BF 00288683

Acta Informatica 1, 173-189 (1972)
© by Springer-Verlag 1972

Organization and Maintenance of Large Ordered Indexes
R. Baver and E. McCREIGHT
Received September 29, 1971

Summary. Organization and maintenance of an index for a dynamic random
access file is considered. It is assumed that the index must be kept on some pseudo
random access backup store like a disc or a drum. The index organization described
allows retrieval, insertion, and deletion of keys in time proportional to log, I where I
is the size of the index and % is a device dependent natural number such that the per-
formance of the scheme becomes near optimal. Storage utilization is at least 50%
but generally much higher. The pages of the index are organized in a special data-
structure, so-called B-trees. The scheme is analyzed, performance bounds are obtained,
and a near optimal & is computed. Experiments have been performed with indexes
up to 100000 keys. An index of size 15000 (100000) can be maintained with an average
of 9 (at least 4) transactions per second on an IBM 360/44 with a 2311 disc.

1. Introduction

In this paper we consider the problem of organizing and maintaining an
index for a dynamically changing random access file. By an index we mean a
collection of index elements which are pairs (x, «) of fixed size physically adjacent
data items, namely a key x and some associated information «. The key x identifies
a unique element in the index, the associated information is typically a pointer
to a record or a collection of records in a random aceess file. For this paper the
associated information is of no further interest.

We assume that the index itself is so voluminous that only rather small
parts of it can be kept in main store at cne time. Thus the bulk of the index must
be kept on some backup store. The class of backup stores considered are pseudo
random access devices which have a rather long access or wait time—as opposed
to a true random access device like core store —and a rather high data rate once
the transmission of physically sequential data has been initiated. Typical pseudo
random access devices are: fixed and moving head discs, drums, and data cells.

Since the data file itself changes, it must be possible not only to search the
index and to retrieve elements, but also to delete and to insert keys—more
accurately index elements—economically. The index organization described
in this paper always allows retrieval, insertion, and deletion of keys in time
proportional to log, I or better, where I is the size of the index, and % is a device
dependent natural number which describes the page size such that the perform-
ance of the maintenance and retrieval scheme becomes near optimal.

In more illustrative terms theoretical analysis and actual experiments show
that it is possible to maintain an index of size 15000 with an average of 9 retrievals,
insertions, and deletions per second in real time on an IBM 360/44 with a 2311
disc as backup store. According to our theoretical analysis, it should be possible
to maintain an index of size 1500000 with at least two transactions per second
on such a configuration in real time.

12 Aeta Informatica, Vol. 1

https://link.springer.com/article/10.1007/BF00288683
https://link.springer.com/article/10.1007/BF00288683

B-Tree

. Developed to meet the growing need for
data structures that could efficiently
manage large datasets on disk.

B-trees maintain their balance through a

9 dynamic process of node splitting and
| e - AL .) redistribution, ensuring that operations
6 1 like insertion, deletion, and searching can
h be performed with logarithmic time
3 .
complexity

Bayer, R., & McCreight, E. M. (1972). Organization and Maintenance of Large Ordered Indexes. Acta
Informatica, 1(3), 173-189.

These properties follow Knuth's
definition for B-Trees of order m:

e Everynode has at most m children.

e Everyinternal node has at least [%]

B_Tree children.
: e Therootnode has at least two
ro p e r I e S children unless it is a leaf.

e Allleaves appear on the same level.

e A non-leaf node with k children
contains k — 1 keys.

Knuth, Donald (1998). Sorting and Searching. The Art of Computer Programming. Vol. 3 (Second ed.). Addison-Wesley. ISBN 0-201-89685-0. Section 6.2.4: Multiway Trees, pp. 481-491.

/©\@ 2-3 Tree (B-Tree of order 3)

e Keyidea: Aflexible tree for
maintaining balance done less
expensively than with regular
binary search trees.

e A2-3tree allows nodes to have: 1
key and 2 links (2-node) or 2 keys
and tree links (3-node).

/©\@ 2-3 Tree Properties

e Maintains order.

e Everynulllinkis at the same
distance from the root.

e (): What is the height of the tree
given n nodes?
A: Between log;(n) and log, (n).

B-Tree
Search

algorithm search(root:node, x:item) - node

i<0

while i < root.nitems and x > root.item[i] do
iei+1

end while

if i < root.nitems and x = root.item[i] then
return (root, i)
end if

if root is a leaf then
return null
end if

return search(root.children[i], x)
end algorithm

10

Search(L): (M)-»(E,J)->(K,L)

Search

1

B-Tree Insert
Insights .

https://en.wikipedia.org/wiki/B-tree#Insertion

Search for the leaf that might
contain the new item.

If the node contains fewer than the
maximum allowed number of items,
then there is room for the new
item. Insert the new item in the
node, keeping the node’s items
ordered.

Otherwise, the node is full, evenly
split it into two nodes.

12

https://en.wikipedia.org/wiki/B-tree#Insertion

Node Split

https://en.wikipedia.org/wiki/B-tree#Insertion

Chose a median item from among
the leaf's items and the new item
that is being inserted.

Items less than the median are put
in the new left node and items
greater than the median are put in
the new right node, with the median
acting as a separation value.

The separation value is inserted in
the node's parent, which may cause
it to be split, and so on. If the node
has no parent (i.e., the node was
the root), create a new root above
this node (increasing the height of
the tree).

13

https://en.wikipedia.org/wiki/B-tree#Insertion

/©\@ Insert(K) in a 2-3 Tree @g

14

/©\@ Insert(K) in a 2-3 Tree @g

M

15

/©\@ Split a 4-Node @g

Insert(V) Split

@ = ab =

/©\@ Insert(V) in a 2-3 Tree @g

M

17

/©\@ Insert(V) in a 2-3 Tree @g

M

18

Insertina2-3Tree:8,2,3,4,0,9,6,5,1

Ny
oo

Strategy: Locate and delete the item,
then restructure the tree to retain its
invariants.

Ideal: Delete from a leaf with more than
an item.

B Tre e D e I ete |mportant:
° 1. Aniteminaninternal nodeisa
I n S I h tS separator for its child nodes.
2. Deleting an item may put its node
under the minimum number of
elements and children.

https://en.wikipedia.org/wiki/B-tree 23

https://en.wikipedia.org/wiki/B-tree

Delete from a leaf:

e Search for the value to delete.

e |[fthevalueisinaleaf node, simply
delete it from the node.

e [funderflow happens, rebalance the
tree.

B-Tree Delete cmmeee

e Choose a new separator, remove it
ca Ses from the leaf node it isin, and replace
the item to be deleted with the new
separator.
e The previous step deleted an item from
aleaf node. If that leaf node is now
deficient (has fewer than the required

number of nodes), then rebalance the
tree starting from the leaf node.

24

https://en.wikipedia.org/wiki/B-tree

https://en.wikipedia.org/wiki/B-tree

B-Tree Rebalancing (1)

If the deficient node's right sibling exists and has more than the minimum number of items, then rotate left:

1. Copy the separator from the parent to the end of the deficient node (the separator moves down; the
deficient node now has the minimum number of items)

2. Replace the separator in the parent with the first item of the right sibling (right sibling loses one node
but still has at least the minimum number of items)

3. Thetreeis now balanced

Otherwise, if the deficient node's left sibling exists and has more than the minimum number of items, then

rotate right:

1. Copy the separator from the parent to the start of the deficient node (the separator moves down;
deficient node now has the minimum number of items)

2. Replace the separator in the parent with the last element of the left sibling (left sibling loses one node
but still has at least the minimum number of items)

3. Thetreeis now balanced

25

https://en.wikipedia.org/wiki/B-tree

https://en.wikipedia.org/wiki/B-tree

B-Tree Rebalancing (2)

Otherwise, if both immediate siblings have only the minimum number of items, then merge
with a sibling sandwiching their separator taken off from their parent.

1. Copy the separator to the end of the left node (the left node may be the deficient node or
it may be the sibling with the minimum number of items)
2. Move all items from the right node to the left node (the left node now has the maximum
number of items, and the right node - empty)
3. Remove the separator from the parent along with its empty right child (the parent loses an
item)
a. If the parentis the root and now has no items, then free it and make the merged
node the new root (tree becomes shallower)
b. Otherwise, if the parent has fewer than the required number of items, then
rebalance the parent

26

https://en.wikipedia.org/wiki/B-tree

https://en.wikipedia.org/wiki/B-tree

/©\@ Delete in 2-3 Tree

Easy to delete a key from a 3-node
or a 4-node at the bottom of the
tree. It is tricky to delete from a 2-
node.

|dea: Use the inorder predecessor or
successor (if any) to replace a
deleted item. Merge subtrees
accordingly.

27

delete
—

delete replace
e —
O by pred

remove
—

root hole

https://ig.opengenus.org/2-3-trees/

remove
() s
root hold

M

dcﬁ:)te
"

dclc)te
g [J

31

https://iq.opengenus.org/2-3-trees/

‘One Tree Less!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

32

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: B-Tree
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: B-Tree
	Slide 5: Bayer, R., & McCreight, E. M. (1972). Organization and Maintenance of Large Ordered Indexes. Acta Informatica, 1(3), 173–189.
	Slide 6: B-Tree
	Slide 7: B-Tree Properties
	Slide 8: 2-3 Tree (B-Tree of order 3)
	Slide 9: 2-3 Tree Properties
	Slide 10: B-Tree Search
	Slide 11: Search
	Slide 12: B-Tree Insert Insights
	Slide 13: Node Split
	Slide 14: Insert(K) in a 2-3 Tree
	Slide 15: Insert(K) in a 2-3 Tree
	Slide 16: Split a 4-Node
	Slide 17: Insert(V) in a 2-3 Tree
	Slide 18: Insert(V) in a 2-3 Tree
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: B-Tree Delete Insights
	Slide 24: B-Tree Delete Cases
	Slide 25: B-Tree Rebalancing (1)
	Slide 26: B-Tree Rebalancing (2)
	Slide 27: Delete in 2-3 Tree
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: One Tree Less!

