
B-Tree
CS 251 - Data Structures

and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Enforcing balance
B-Tree

01

3

B-Tree
01
Enforcing balance

4

Bayer, R., & McCreight, E. M. (1972).
Organization and Maintenance of

Large Ordered Indexes. Acta
Informatica, 1(3), 173–189.

5https://link.springer.com/article/10.1007/BF00288683

https://link.springer.com/article/10.1007/BF00288683
https://link.springer.com/article/10.1007/BF00288683

B-Tree

Developed to meet the growing need for
data structures that could efficiently
manage large datasets on disk.

B-trees maintain their balance through a
dynamic process of node splitting and
redistribution, ensuring that operations
like insertion, deletion, and searching can
be performed with logarithmic time
complexity

Bayer, R., & McCreight, E. M. (1972). Organization and Maintenance of Large Ordered Indexes. Acta
Informatica, 1(3), 173–189.

6

B-Tree
Properties

These properties follow Knuth’s
definition for B-Trees of order 𝑚:

● Every node has at most 𝑚 children.

● Every internal node has at least 𝑚
2

children.

● The root node has at least two
children unless it is a leaf.

● All leaves appear on the same level.

● A non-leaf node with 𝑘 children
contains 𝑘 − 1 keys.

Knuth, Donald (1998). Sorting and Searching. The Art of Computer Programming. Vol. 3 (Second ed.). Addison-Wesley. ISBN 0-201-89685-0. Section 6.2.4: Multiway Trees, pp. 481–491. 7

2-3 Tree (B-Tree of order 3)

● Key idea: A flexible tree for
maintaining balance done less
expensively than with regular
binary search trees.

● A 2-3 tree allows nodes to have: 1
key and 2 links (2-node) or 2 keys
and tree links (3-node).

M

RE J

A C S XH L P

8

2-3 Tree Properties

● Maintains order.

● Every null link is at the same
distance from the root.

● Q: What is the height of the tree
given 𝑛 nodes?
A: Between log3(𝑛) and log2(𝑛).

M

RE J

A C S XH L P

9

B-Tree
Search

algorithm search(root:node, x:item) → node
i ← 0
while i < root.nitems and x > root.item[i] do

i ← i + 1
end while

if i < root.nitems and x = root.item[i] then
return (root, i)

end if

if root is a leaf then
return null

end if

return search(root.children[i], x)
end algorithm

10

Search

M

E J

A C H PK L

R V

S X

Search(L): (M)→(E,J)→(K,L)

11

B-Tree Insert
Insights

● Search for the leaf that might
contain the new item.

● If the node contains fewer than the
maximum allowed number of items,
then there is room for the new
item. Insert the new item in the
node, keeping the node’s items
ordered.

● Otherwise, the node is full, evenly
split it into two nodes.

https://en.wikipedia.org/wiki/B-tree#Insertion 12

https://en.wikipedia.org/wiki/B-tree#Insertion

Node Split

● Chose a median item from among
the leaf’s items and the new item
that is being inserted.

● Items less than the median are put
in the new left node and items
greater than the median are put in
the new right node, with the median
acting as a separation value.

● The separation value is inserted in
the node's parent, which may cause
it to be split, and so on. If the node
has no parent (i.e., the node was
the root), create a new root above
this node (increasing the height of
the tree).

https://en.wikipedia.org/wiki/B-tree#Insertion 13

https://en.wikipedia.org/wiki/B-tree#Insertion

Insert(K) in a 2-3 Tree

M

RE J

A C S XH L P

14

Insert(K) in a 2-3 Tree

M

RE J

A C S XH PK L

15

Split a 4-Node

S X
Insert(V)

S V X
V

XS

Split

16

Insert(V) in a 2-3 Tree

M

RE J

A C S XH PK L

17

Insert(V) in a 2-3 Tree

M

E J

A C H PK L

R V

S X

18

Insert in a 2-3 Tree: 8, 2, 3, 4, 0, 9, 6, 5, 1

8
8:

2, 8
2:

2, 3, 8
3:

3

2 8

4:

3

2 4, 8

0:

3

0, 2 4, 8

19

9: 6:

3

0, 2 4, 8, 9

3, 8

0, 2 94

3, 8

0, 2 94, 6

20

5:

3, 8

0, 2 94, 5, 6

3, 5, 8

0, 2 94 6

3

0, 2 94 6

5

8

21

1:

3

0, 1, 2 94 6

5

8 1, 3

0 94 6

5

8

2

22

B-Tree Delete
Insights

Strategy: Locate and delete the item,
then restructure the tree to retain its
invariants.

Ideal: Delete from a leaf with more than
an item.

Important:
1. An item in an internal node is a

separator for its child nodes.
2. Deleting an item may put its node

under the minimum number of
elements and children.

https://en.wikipedia.org/wiki/B-tree 23

https://en.wikipedia.org/wiki/B-tree

B-Tree Delete
Cases

Delete from a leaf:
● Search for the value to delete.
● If the value is in a leaf node, simply

delete it from the node.
● If underflow happens, rebalance the

tree.

Delete from an internal node:
● Choose a new separator, remove it

from the leaf node it is in, and replace
the item to be deleted with the new
separator.

● The previous step deleted an item from
a leaf node. If that leaf node is now
deficient (has fewer than the required
number of nodes), then rebalance the
tree starting from the leaf node.

https://en.wikipedia.org/wiki/B-tree 24

https://en.wikipedia.org/wiki/B-tree

B-Tree Rebalancing (1)

If the deficient node's right sibling exists and has more than the minimum number of items, then rotate left:
1. Copy the separator from the parent to the end of the deficient node (the separator moves down; the

deficient node now has the minimum number of items)
2. Replace the separator in the parent with the first item of the right sibling (right sibling loses one node

but still has at least the minimum number of items)
3. The tree is now balanced

Otherwise, if the deficient node's left sibling exists and has more than the minimum number of items, then
rotate right:
1. Copy the separator from the parent to the start of the deficient node (the separator moves down;

deficient node now has the minimum number of items)
2. Replace the separator in the parent with the last element of the left sibling (left sibling loses one node

but still has at least the minimum number of items)
3. The tree is now balanced

25https://en.wikipedia.org/wiki/B-tree

https://en.wikipedia.org/wiki/B-tree

B-Tree Rebalancing (2)

Otherwise, if both immediate siblings have only the minimum number of items, then merge
with a sibling sandwiching their separator taken off from their parent.

1. Copy the separator to the end of the left node (the left node may be the deficient node or
it may be the sibling with the minimum number of items)

2. Move all items from the right node to the left node (the left node now has the maximum
number of items, and the right node – empty)

3. Remove the separator from the parent along with its empty right child (the parent loses an
item)

a. If the parent is the root and now has no items, then free it and make the merged
node the new root (tree becomes shallower)

b. Otherwise, if the parent has fewer than the required number of items, then
rebalance the parent

26https://en.wikipedia.org/wiki/B-tree

https://en.wikipedia.org/wiki/B-tree

Delete in 2-3 Tree

M

E J

A C H PK L

R V

S X

Easy to delete a key from a 3-node
or a 4-node at the bottom of the
tree. It is tricky to delete from a 2-
node.

Idea: Use the inorder predecessor or
successor (if any) to replace a
deleted item. Merge subtrees
accordingly.

27

Delete 3:

1, 3

0 94 6

5

8

2

1, _

0 94 6

5

8

2

1, 4

0 9_ 6

5

8

2

1

0 92, 4 6

5

8

28

Delete 9:

1

0 96

5

8

2, 4

1

0 _6

5

8

2, 4

1

0 6, 8

5

_

2, 4

1, 5

0 6, 82, 4

29

Delete 5:

0 6, 8

1, 5

2, 4 0 6, 8

1, _

2, 4 0 8

1, 6

2, 4

30

https://iq.opengenus.org/2-3-trees/ 31

https://iq.opengenus.org/2-3-trees/

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

One Tree Less!
Do you have any questions?

32

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: B-Tree
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: B-Tree
	Slide 5: Bayer, R., & McCreight, E. M. (1972). Organization and Maintenance of Large Ordered Indexes. Acta Informatica, 1(3), 173–189.
	Slide 6: B-Tree
	Slide 7: B-Tree Properties
	Slide 8: 2-3 Tree (B-Tree of order 3)
	Slide 9: 2-3 Tree Properties
	Slide 10: B-Tree Search
	Slide 11: Search
	Slide 12: B-Tree Insert Insights
	Slide 13: Node Split
	Slide 14: Insert(K) in a 2-3 Tree
	Slide 15: Insert(K) in a 2-3 Tree
	Slide 16: Split a 4-Node
	Slide 17: Insert(V) in a 2-3 Tree
	Slide 18: Insert(V) in a 2-3 Tree
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: B-Tree Delete Insights
	Slide 24: B-Tree Delete Cases
	Slide 25: B-Tree Rebalancing (1)
	Slide 26: B-Tree Rebalancing (2)
	Slide 27: Delete in 2-3 Tree
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: One Tree Less!

